King Fahd University of Petroleum & Minerals Department of Information and Computer Science

Dr. Husni Al-Muhtaseb

Sample Solution

Question	1	2	3	4	5	6	7	8	9	10	11	Total
Max	5	12	5	12	10	8	8	8	16	6	10	100
CLO*	2	2	2	2	2	3	3	3	3	3	3	
Earned												
* Course Learning outcomes									Section 03			

Question 1: [5 Points] Induction [CLO 2]

Which statement is true? Circle the most suitable answer.

- (a) Mathematical induction is based on the rule of inference that tells us that if P(1) and $\forall k(P(k) \rightarrow P(k + 1))$ are true for the domain of positive integers, then $\forall nP(n)$ is true.
- (b) A proof by mathematical induction has two parts, a **basis step**, where we show that P(1) is true, and an **inductive step**, where we show that for all positive integers k, if P(k) is true, then P(k + 1) is true.
- (c) In general, mathematical induction can be used to prove statements that assert that P(n) is true for all positive integers n, where P(n) is a propositional function.

(d) All the other statements are true.

Question 2: [12 Points] Induction [CLO 2]

Prove that
$$\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} = \frac{n}{(n+1)}$$
 For all positive integers *n*.

Basis step:

n = 1. Here both sides of the equation are equal to 1/2, so the claim holds. **Inductive step**

We assume that $P(n) = \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} = \frac{n}{(n+1)}$ is true for n = k. That is

 $P(k) = \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{k(k+1)} = \frac{k}{(k+1)}$ is true. We need to show that P(k+1) is true. That is

$$P(k+1) = \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} = \frac{k+1}{(k+2)}$$
$$P(k+1) = \frac{k}{(k+1)} + \frac{1}{(k+1)(k+2)} = \frac{k(k+2)+1}{(k+1)(k+2)} = \frac{k^2+2k+1}{(k+1)(k+2)} = \frac{(k+1)(k+1)}{(k+1)(k+2)} = \frac{(k+1)}{(k+2)}$$

This completes the proof.

Question 3: [5 Points] Induction [CLO 2]

Which statement is true? Circle the most suitable answer.

(a) 1 + 2 + ... + n = n (n + 1) / 2.
(b) n < 2ⁿ for all integers n ≥ 1.
(c) 2ⁿ < n! for n ≥ 4.
(d) All the other statements are true.

Question 4: [12 Points] Strong Induction [CLO 2]

Let P(n) be the statement that a postage of n cents can be formed using just 3-cent stamps and 5-cent stamps. This question outline a strong induction proof that P(n) is true for $n \ge 8$. Answer the following:

(a) Show that the statements *P*(8), *P*(9), and *P*(10) are true, completing the basis step of the proof. [2 points]

8 = 3 + 5, 9 = 3 + 3 + 3, 10 = 5 + 5, so that *P*(8), *P*(9), and *P*(10) are true.

(b) What is the inductive hypothesis of the proof? [3 points]

The inductive hypothesis is that P(n) is true for $8 \le n \le k$, where $k \ge 10$. (Notice that this is a strong induction proof, which requires a stronger hypothesis.)

(c) What do you need to prove in the inductive step? [2 points]

We need to prove in the inductive step that P(k + 1) is true.

(d) Complete the inductive step for $k \ge 10$. [3 points]

If $k \ge 10$, then k + 1 = (k - 2) + 3. Since $k - 2 \ge 8$, by the induction hypothesis we have that P(k - 2) is true, i.e., a postage of 2k - 2 cents can be paid by using 3-cent and 5-cent stamps. Adding one 3-cent stamp, we can pay a postage of k + 1 cents, i.e., P(k + 1) is true.

(e) Explain why these steps show that this statement is true whenever $n \ge 8$. [2 points]

We have completed both the basis step and the inductive step, so by the principle of strong induction, the statement is true for every integer *n* greater than or equal to 8.

Question 5: [10 Points] Structural Induction and Recursion [CLO 2]

(a) define the height h(T) of a full binary tree T recursively.

We define the height h(T) of a full binary tree T recursively. **BASIS STEP**: The height of the full binary tree T consisting of only a root r is h(T) = 0. **RECURSIVE STEP**: If T_1 and T_2 are full binary trees, then the full binary tree $T = T_1 \cdot T_2$ has height $h(T) = 1 + \max(h(T_1), h(T_2))$.

(b) define the number of vertices n(T) of a full binary tree *T* recursively.

We define the number of vertices n(T) of a full binary tree *T* recursively as follows.

BASIS STEP: The number of vertices n(T) of the full binary tree *T* consisting of only a root *r* is n(T) = 1.

RECURSIVE STEP: If T_1 and T_2 are full binary trees, then the number of vertices of the full binary tree $T = T_1 \cdot T_2$ is $n(T) = 1 + n(T_1) + n(T_2)$.

Question 6: [8 Points] The Pigeonhole Principle [CLO 3]

There are N students in a room; each student picks a day of the year to get a free dinner at a fancy restaurant. *N* is such that there must be at least one group of five students who select the same day. What is the smallest such *N* if the year is a leap year (366 days)? Show your steps to the solution.

The worst case is to have 366 students select 366 different days repeatedly. With this assumption we need N to be (4). (366) + 1 = 1465 to guarantee that there must be at least one group of five students who select the same day.

Question 7: [8 Points] Counting and the Pigeonhole Principle [CLO 3]

Let S = $\{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21\}$. What is the smallest integer N > 0 such that for any set of N integers, chosen from S, there must be two distinct integers that one of them divides the other? Show your steps to the solution.

We have 1 divides all other numbers of the set:

(1,3), (1,5), (1,7), (1,9), (1,11), (1,13), (1,15), (1,17), (1,19), (1,21)

We have 3 divides three numbers of the set: (3, 9), (3, 15), (3, 21)

We have the following pairs one of them divides the other: (5, 15), (7, 21)

Hence, the following numbers do not divide other numbers in the list and no other number from the list divides them other than the number 1: 11, 13, 17, 19 (4 numbers). We choose these numbers and we can add to them 9, 15, 21. So the largest list that does not have two distinct integer that one divides the other is $\{9, 11, 13, 15, 17, 19, 21\}$ (7 elements). A second list is $\{3, 5, 7, 11, 13, 17, 19\}$ (7 elements). Adding any other number to the list will make the list has two distinct integers that one divides the other. So N = 8.

Question 8: [8 Points] Permutations and Combinations [CLO 3]

The owner of a pizzeria prepares every pizza by always combining 4 different ingredients. How many ingredients does he need, at least, if he would like to offer 35 different pizzas in the menu? Show your steps to the solution.

Using 6 different ingredients, he can obtain $\binom{6}{4} = 15$ different pizzas, while with 7 ingredients he gets $\binom{7}{4} = 35$ different pizzas. Then, since $\binom{6}{4} < 35 \le \binom{7}{4}$, he needs at least 7 ingredients.

Question 9: [16 Points] Permutations and Combinations [CLO 3]

(a) How many strings of four decimal digits end with an even digit?

 $10 \times 10 \times 10 \times 5 = 5000$

(b) How many strings of four decimal digits do not contain the same digit twice?

Assuming 0 is included: $10 \times 9 \times 8 \times 7 = 5040$ Assuming 0 is not included: $9 \times 8 \times 7 \times 6 = 3024$

(c) How many strings of four decimal digits have exactly three digits that are 9s?

9 + 9 + 9 + 9 = 36

The string can have: The non-9 as the first digit, OR the non-9 as the second digit, OR the non-9 as the third digit, OR the non-9 as the fourth digit. Thus, using the sum rule:

For each of those cases, there are 9 possibilities for the non-9 digit (any number other than 9) – Thus, the answer is 9 + 9 + 9 + 9 = 36

(d) How many permutations of the letters ABCDEFG contain the string "CD"?

Count the permutation of AB\$EFG where \$ represents CD:

 $6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$

Question 10: [6 Points] Binomial Coefficients and Identities [CLO 3]

The row of Pascal's triangle containing the binomial coefficients $\binom{10}{k}$, $0 \le k \le 10$, is:

1 10 45 120 210 252 210 120 45 10 1

Use Pascal's identity to produce the row immediately **before** this row in Pascal's triangle.

1 9 36 84 126 126 84 36 9 1

Question 11: [10 Points] Binomial Coefficients and Identities [CLO 3]

What is the coefficient of $x^{101}y^{99}$ in the expansion of $(2x - 3y)^{200}$? You may need to use the binomial formula $(a + b)^n = \sum_{k=0}^n {n \choose k} a^{n-k} b^k$. Show your answer using combination and multiplication of numbers (no need to calculate a final answer).

Solution: Using the binomial formula taking a=2x, b=-3y, n=200 and k=99 we have that $x^{101}y^{99}$ term is $\binom{200}{99}(2x)^{101}(-3y)^{99} = -\binom{200}{99}2^{101}3^{99}x^{101}y^{99}$

Hence the desired coefficient is $-\binom{200}{99}2^{101}3^{99}$